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Molecular targets of aspirin and cancer
prevention
L Alfonso1, G Ai2, R C Spitale3 and G J Bhat*,2

1DYouville College School of Pharmacy, Buffalo, NY, USA; 2Department of Pharmaceutical Sciences, South Dakota State University
College of Pharmacy, Brookings, SD, USA and 3Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA

Salicylates from plant sources have been used for centuries by different cultures to treat a variety of ailments such as inflammation,
fever and pain. A chemical derivative of salicylic acid, aspirin, was synthesised and mass produced by the end of the 19th century
and is one of the most widely used drugs in the world. Its cardioprotective properties are well established; however, recent
evidence shows that it can also act as a chemopreventive agent. Its antithrombotic and anti-inflammatory actions occur through
the inhibition of cyclooxygenases. The precise mechanisms leading to its anticancer effects are not clearly established, although
multiple mechanisms affecting enzyme activity, transcription factors, cellular signalling and mitochondrial functions have been
proposed. This review presents a brief account of the major COX-dependent and independent pathways described in connection
with aspirin’s anticancer effects. Aspirin’s unique ability to acetylate biomolecules besides COX has not been thoroughly
investigated nor have all the targets of its primary metabolite, salicylic acid been identified. Recent reports on the ability of aspirin
to acetylate multiple cellular proteins warrant a comprehensive study to investigate the role of this posttranslational modification
in its anticancer effects. In this review, we also raise the intriguing possibility that aspirin may interact and acetylate cellular
molecules such as RNA, and metabolites such as CoA, leading to a change in their function. Research in this area will provide a
greater understanding of the mechanisms of action of this drug.

The common household drug, aspirin (acetylsalicylic acid) has
been around for more than a century. Its basic mechanism of
action as an anti-inflammatory agent is well documented, yet
newer beneficial effects and modes of action keep on adding to its
ever-expanding therapeutic repertoire. It is currently used
extensively as a cardioprotective and antithrombotic agent. In
recent years, aspirin has generated significant interest as a potential
chemopreventive agent supported by strong evidence from
epidemiological data. Numerous clinical observations and labora-
tory studies have shown that regular use of aspirin is associated
with a reduced risk for colorectal, oesophageal, breast, lung,
prostate, liver and skin cancers (Harris et al, 2005; Kaiser, 2012;
Sahasrabuddhe et al, 2012; Gamba et al, 2013; Veitonmaki et al,
2013). Aspirin appears to have both chemopreventive and
chemotherapeutic effects (Chan et al, 2009; Holmes et al, 2010;
Bastiaannet et al, 2012; Rothwell et al, 2012); however, aspirin is
not currently prescribed for cancer prophylaxis owing to its
adverse effects such as the risk of bleeding. Depending on the
conditions being treated, aspirin is used at a range of doses
from 75 mg (antiplatelet) to 325–600 mg (analgesic) to 1.2 g

(anti-inflammatory) (Dovizio et al, 2013). Following oral admin-
istration, low-dose aspirin gives a peak plasma concentration
of B7 mM; however, analgesic and anti-inflammatory doses can
yield plasma concentrations ranging from 30 to 150 mM (Dovizio
et al, 2013). These represent plasma concentrations of intact
acetylsalicylic acid. The primary metabolite of aspirin is salicylic
acid. The plasma salicylate concentrations obtained from the
hydrolysis of low-dose aspirin is estimated to be 15 mM, whereas the
analgesic and anti-inflammatory doses can yield concentrations
ranging from 500 to 2500mM (Dovizio et al, 2013). Incidentally,
most of aspirin’s anticancer effects have come to light during the
course of its use as a cardiovascular prophylactic and/or analgesic
agent. Studies have shown that doses ranging from 81 to 325 mg
taken over prolonged periods of time, decrease the incidence and
mortality associated with colorectal cancer (Rothwell et al, 2010,
2012; Dovizio et al, 2013). Several studies using colon cancer cells
and tumour models have demonstrated that aspirin can prevent
cancer cell growth and induce apoptosis. Various mechanisms and
cellular pathways have been identified as contributors to these
effects (Thun et al, 2012; Dovizio et al, 2013).
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PROPOSED MECHANISMS OF ACTION

Aspirin’s molecular mechanism of action was discovered in the
1970s when it was demonstrated that it irreversibly acetylates and
inactivates the cyclooxygenase enzyme (prostaglandin H-synthase)
(Vane, 1971; Roth et al, 1975). The COX enzymes are involved in
the synthesis of cyclic endoperoxides from arachidonic acid (AA)
forming prostaglandins, prostacyclins and thromboxanes, which
have a wide array of effects. Aspirin is unique because it is the only
non-steroidal anti-inflammatory drug (NSAID) that irreversibly
inactivates both isoforms of the COX enzymes (COX-1 and COX-2),
which bring about its anti-inflammatory, antipyretic and analgesic
effects. Although the precise mechanisms by which aspirin
exerts its anticancer effects are yet to be elucidated, both COX-
dependent and independent mechanisms have been proposed
(Thun et al, 2012).

COX-DEPENDENT MECHANISMS

Aspirin has been shown experimentally to induce apoptosis (Shiff
et al, 1996, 2003; Gupta and DuBois, 1998; Moyad, 2001; Rao and
Reddy, 2004) and to inhibit angiogenesis (Sawaoka et al, 1999;
Abdelrahim and Safe, 2005) in cancer cells. Most hypotheses have
focused on aspirin’s ability to affect AA metabolism by
permanently inactivating the ‘housekeeping’ COX-1 and the
‘inducible’ COX-2 enzymes by acetylating strategically located
serine residues (Ferrandez et al, 2012).

Several COX-dependent pathways/downstream targets have
been identified in aspirin’s anticancer effects. Aspirin and its
primary metabolite, salicylate has been shown to affect COX-2
expression at both transcriptional and posttranscriptional levels
(Xu et al, 1999). One of the earlier reports demonstrated that
aspirin and sodium salicylate decrease the synthesis of proin-
flammatory prostaglandins by reducing the transcription of COX-2
gene (Xu et al, 1999). Cyclooxygenase enzyme inhibition increases
AA levels, which can prompt the conversion of sphingomyelin to
ceramide, which is a well-known mediator of apoptosis (Chan et al,
1998). Aspirin is known to affect platelet function through COX
inhibition. Cancer patients exhibit an increase in platelet activation
that has been known to have a role in cancer progression and
metastasis (Gay and Felding-Habermann, 2011). With its short
plasma half-life of around 15–20 min, aspirin is much more
effective at inhibiting COX-1 in anucleate platelets as opposed to
inhibiting COX-2 in monocytes, thus causing a long-lasting defect
in TXA2-dependent platelet function (Ferrandez et al, 2012).
COX-2 is less sensitive to aspirin because inhibition of the
inducible COX-2 requires higher doses of aspirin and shorter
dosing intervals as nucleated cells can promptly resynthesise the
enzyme. Cyclooxygenase-2 is known to be overexpressed in colon
cancer (Eberhart et al, 1994; Williams et al, 1997), and some
researchers postulated that activated platelets could bring about
this overexpression in colorectal cancers via the production of
IL-1b, PGDF and TGF-b (Sciulli et al, 2005).

Whereas COX-1 acetylation by aspirin abolishes its enzymatic
activity, COX-2 acetylation modifies the enzyme in such a way that
it performs an incomplete reaction ultimately resulting in the
generation of lipoxins (Claria and Serhan, 1995), which inhibit
cancer cell proliferation and angiogenesis (Ferrandez et al, 2012).
COX-2 expressing colorectal cancer tissues produces copious
amounts of prostaglandin E2 (PGE2). As PGE2 causes resistance to
apoptosis, stimulation of cell migration and angiogenesis, it has
been implicated in the development and progression of various
malignancies including those of the lung, breast and neck (Dixon
et al, 2013). Human studies demonstrated that adenoma regression
was more effective when PGE2 tissue levels were significantly

inhibited by NSAIDs (Giardiello et al, 2004). Another study by
Liao et al, 2012 discovered that COX-2 inhibition by aspirin
downregulated phosphatidylinositol 3-kinase signalling, suggesting
that regular aspirin use after colorectal cancer diagnosis led to
increased survival among patients with mutated-PIK3CA tumours.
Thus aspirin’s ability to reduce colorectal cancer occurs at least in
part, via the inhibition of COX-2 activity.

COX-INDEPENDENT MECHANISMS

In the face of mounting evidences, the contribution of COX-
independent pathways to the anticancer effects of aspirin or its
metabolite, salicylate cannot be discounted. Aspirin and salicylates
have been found to inhibit IkB kinase (IKK) b and prevent NF-kB
activation both in vivo and in vitro (Kopp and Ghosh, 1994; Yin
et al, 1998; McCarty and Block, 2006). Till date, the only COX-
independent target that is known to directly interact with aspirin
or salicylic acid is IKK. Transcription of several proteins involved
in inflammatory responses and angiogenesis is promoted by
NF-kB (McCarty and Block, 2006); therefore, inhibition of this
pathway may also contribute to the observed anticancer effects.
However, some studies showed that aspirin-mediated induction of
apoptosis in human colorectal cancer models requires activation of
the NF-kB signalling pathway (Stark et al, 2007). It is possible that
this differential effect may be related to the specific cell types and
tissue environments. Aspirin has also been known to interfere with
extracellular-signal-regulated kinase (ERK) signalling leading to its
inhibition by preventing the binding of c-Raf with Ras in vitro (Pan
et al, 2008). This observation is important because the ERK
pathway is involved in cellular processes like proliferation,
differentiation and survival. In view of the high levels of Ras
mutations observed in many cancers leading to the activation of
the ERK pathway (Bos, 1989), the finding that aspirin interferes
with ERK signalling is very significant.

Aspirin can also affect mitochondrial functions. It increases the
mitochondrial membrane permeability, causing the release of
cytochrome c, resulting in the activation of caspases followed by
cell apoptosis in several cell lines (Bellosillo et al, 1998;
Zimmermann et al, 2000; Dikshit et al, 2006). Another mechanism
includes the inhibition of mitochondrial calcium uptake by salicylic
acid (Nunez et al, 2006) leading to anti-proliferative effects.

One of the major oncogenic pathways in colon cancer is the
Wnt/b-catenin pathway. Aspirin is known to cause a concentra-
tion-dependent inhibition of this pathway in vitro (Bos et al, 2006).
A recent study in colon cancer cells by Pathi et al, 2012
demonstrated that aspirin caused caspase-dependent proteolysis
of Sp1, Sp3 and Sp4 (specificity protein) transcription factors,
which was associated with downregulation of several Sp-regulated
genes involved in cell survival, proliferation and angiogenesis.
In another study, it was demonstrated that inhibition of
6-phosphofructo-1-kinase activity by aspirin and salicylic acid
caused a decrease in glucose consumption and inhibition of cell
proliferation (Spitz et al, 2009). Law et al showed that salicylate-
induced cell growth arrest is associated with inhibition of p70s6k
and downregulation of c-Myc, Cyclin D1, Cyclin A and
proliferating cell nuclear antigen (Law et al, 2000). These reports
indicate that the targets of aspirin and salicylates may directly or
indirectly modulate the activity of transcription factors, cell
signalling proteins, metabolic enzymes and mitochondrial proteins.

EXTRA-COX ACETYLATION TARGETS

Aspirin is mainly absorbed intact in the gastrointestinal (GI) tract
(Leonards, 1962; Bridges et al, 1975) and later hydrolysed to the
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acetate and salicylate ions as it circulates in the plasma (Leonards,
1962). Hydrolysis can also occur during passage through the liver
and other organs. It is well known that the acetyl group of aspirin
can acetylate several proteins other than COX (Alfonso et al,
2009b; Marimuthu et al, 2011; Bateman et al, 2013). Experiments
with radiolabelled 3H or 14C aspirin demonstrated that aspirin
acetylates several proteins in vitro and in vivo through a
transacetylation reaction (Hawkins et al, 1968; Caterson et al,
1978; Rainsford et al, 1983). Aspirin acetylates human serum
albumin and fibrinogen in vitro and in vivo (Hawkins et al, 1968;
Bjornsson et al, 1989). It can also acetylate several other proteins
and biomolecules, such as haemoglobin, DNA, RNA, histones,
transglutaminase as well as other plasma constituents including
hormones and enzymes (Pinckard et al, 1968; Lai et al, 2010). In a
remarkable study, it was found that in vivo administration of
radiolabelled 3H or 14C aspirin to rats, led to the binding of the
acetyl group of aspirin to several proteins, glycoproteins and lipids
of the stomach, kidney, liver and bone marrow (Rainsford et al,
1983), demonstrating that the acetyl group is able to reach distant
organs.

In a previous study, we demonstrated (Alfonso et al, 2009a) that
aspirin acetylates the tumour suppressor protein, p53 at lysine 382
in MDA-MB-231 breast cancer cells. This acetylation was observed
at the physiologically achievable concentration of 100 mM. MDA-
MB-231 cells contain a mutant form of p53 (codon 280, Arg to
Lys). This effect correlated with increased p53 DNA-binding
activity and the expression of two of its target genes, p21CIP1 and
Bax. Aspirin also acetylated p53 in other cell lines carrying
different p53 mutations (unpublished data); however, it is not clear
at this stage, if this changes the functional activity of p53. In view
of the reports that, p53 is mutated and inactivated in B50% of all
tumours, our observation that aspirin can acetylate mutant p53, is
an important finding. Although further research is required, it is
possible that acetylation of mutant p53 by aspirin, in some cases,
may restore its DNA-binding properties leading to target gene
expression. If this is the case, aspirin may curtail cancer cell growth
through reactivation of mutant p53. In another study, using
antibodies specific for the recognition of acetylated lysine residues,
we found that aspirin acetylates multiple proteins in a dose-
dependent manner in rat liver epithelial cells and HCT-116 colon
cancer cells (Alfonso et al, 2009b; Marimuthu et al, 2011). In HCT-
116 cells (Marimuthu et al, 2011), aspirin acetylated at least 33
different proteins, which included histones, cytoskeletal and heat
shock proteins, glycolytic and pentose phosphate pathway enzymes

and ribosomal and mitochondrial proteins. A detailed investigation
on how the acetylation effects the functional activity of these
proteins is yet to be conducted. It is to be noted that our study only
identified proteins that are acetylated at lysine residues, as made
possible by the use of the anti-acetyl lysine antibody and mass
spectrometry. Aspirin can also acetylate proteins at serine and
cysteine residues (Qin et al, 1993; Alfonso et al, 2009b; Bateman
et al, 2013), but these acetylation events were not detected by our
approach. In a recent report Bateman et al (2013) reported the
ability of aspirin to acetylate 120 proteins in HCT15 human
adenocarcinoma cells using an alkyne–aspirin chemical reporter.
The identified enzymes included several metabolic pathway
enzymes, structural proteins, proteins involved in translation,
proteasomal subunits, mitochondrial proteins and histones.
Among these, histones appear to be most intriguing owing to
their prominent role in transcriptional regulation. Histone
acetylation can cause charge neutralisation of basic lysine residues
leading to changes in the chromatin structure and transcription of
genes. It is possible that chemical acetylation by aspirin may have a
role in shifting the equilibrium of the enzymatic acetylation/
deacetylation process that occurs naturally in cells bringing about
major changes in gene expression.

Studies show that aspirin is more effective in decreasing the
incidence of colon cancer compared with the distal tissues (e.g.,
breast, lung, prostate, liver and skin). One possibility is that
intestinal epithelial cells may be exposed to higher concentration of
intact aspirin immediately following oral administration compared
with the measured plasma levels, which reflects concentration after
first-pass metabolism. A direct exposure of GI epithelial cells to
higher concentration of intact aspirin may lead to greater degree of
acetylation of proteins in the GI cells than the distal tissues. Plasma
concentration of the intact aspirin at various doses following oral
administration has been published; however, a similar estimation
in the GI tract has not been reported. Future work is required to
determine whether the significantly greater cancer risk reduction
observed in GI tract is related to increased acetylation of proteins
as compared with the distal tissues.

CHEMICAL INTERACTIONS OF ASPIRIN WITHIN THE CELL

Many natural products found in plants and bacterial cells have
intrinsic reactivity properties as electrophiles (Drahl et al, 2005).
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Reaction with reactive small molecules, including cellular meta-
bolites, damaged metabolic intermediates or exogenous agents can
result in drastic rewiring of essential cellular processes, ultimately
resulting in changes in cellular phenotype (Moellering and Cravatt,
2013; Wang et al, 2014). Although such interactions have been
observed for quite some time, their effect on cancer cell biology is
only recently being investigated in quite detail. The reactive nature
of aspirins acetyl group (t1/2 in solution is 30 min) suggests that
aspirin may also have off-target chemical reactions that can
contribute to its biological effect.

Once aspirin enters the cell, a good portion of the compound is
going to be quenched owing to hydrolysis reaction with aqueous
solvent (Figure 1A). This reaction and others present an
opportunity for high concentrations of salicylic acid in the cell,
which may also interact with cellular molecules and disrupt their
activity. Such an interaction has been described with NF-kB, an
important transcription factor (Kopp and Ghosh, 1994).

In addition to hydrolytic reactions, many reactive metabolites
could, in principle, also react with aspirin. For example, thiol-
containing glutathione can have an intracellular concentration in
the millimolar range (Figure 1A) (Bennett et al, 2009).
Glutathione’s near-neutral pKa and high reactivity would catalyse
acetylation and quench its reactivity, thus taking away its ability to
prevent oxidative stress (Arnold et al, 1995). Such interactions
could remodel the cells metabolic profile and also have dramatic
effects on stress-response pathways involving metabolite quench-
ers. At present, there is a lack of investigation into the alterations
that aspirin has on the metabolic pool of the cell.

Recent evidence has shown that the introduction of electrophiles
into the cell can alter enzyme activity by quenching lysine and
cysteine reactivity (Wang et al, 2014). In these cases, the reactions
of these molecules are enhanced by binding into active sites to
lower the transition state and then reacting to quench activity. This
is similar to aspirin’s role to render the COX enzymes catalytically
dead (Figure 1A and B). However, additional examples, beyond the
COX enzymes are severely limited. An exciting experimental
platform to explore this possibility is activity-based profiling. In
this way proteomes or cells would be exposed to concentrations of
aspirin, allowing the chemical to react with protein side chains,
covalently. Then, activity-based probes can be used to explore the
changes in reactivity of active site-localised nucleophiles
(Figure 1C). In this way, protein-reactive groups could be
identified and enzymes whose activity is altered because of aspirin
could be identified. Further, in many cases the targets of activity-
based probes are already known (Simon et al, 2013), so this would
also yield protein identification in one experiment. Some work has
already demonstrated that there is widespread acetylation of
biomolecules owing to aspirin’s reactivity (Marimuthu et al, 2011;
Bateman et al, 2013). Therefore, there is a serious need to utilise
optimised chemical and proteomic methods to interrogate the
reactivity of both aspirin and salicylic acid.

UNDERSTUDIED POTENTIAL TARGETS OF ASPIRIN

A significant amount of research has been focused on the
interactions of aspirin with proteins. Overall, these studies have
revealed that aspirin’s reactivity can be increased by structural
interactions that increase binding affinity for either steric blocking
of enzymatic transformations, or the covalent acetylation of
nucleophilic functional groups to render proteins enzymatically
dead (Figure 2A). Nevertheless, the cell is composed of many
different biologics, some of which are also inherently reactive and
thus, may also sense aspirin and become modified.

Two understudied potential aspirin-interacting cellular mole-
cules are RNA and metabolites. First, a significant portion of

cellular mass is made up of RNA molecules. And, it has been
shown that RNAs can become modified by exogenous chemicals
introduced into the cellular milieu. Some of these compounds rely
on RNA’s inherent reactivity as a nucleophile. RNA structure
probes are a class of molecules that take advantage of RNA
reactivity. For example, SHAPE (selective 20 hydroxyl acylation and
primer extension). In SHAPE, the reactivity of the 20-hydroxyl in
RNA is gated by local nucleotide flexibility (Merino et al, 2005). In
other words, the 20-hydroxyl is reactive at single-stranded and
conformationally flexible positions but is unreactive at nucleotides
constrained by base pairing. In solution, 20-OH functional groups
have pKa values that range from 12 to 14 (Velikyan et al, 2001).
Nevertheless, it has been shown that RNA functional groups can
alter their pKa values to approach biological conditions, and these
changes are dependent on RNA structure (Ryder et al, 2001; Guo
et al, 2009). SHAPE utilises electrophilic compounds that have
carbonyl-carbon reactive centres, mostly anhydrides (Figure 2B).
Such electrophilic centres are similar to those found in aspirin.
Further, it has also been shown that certain 20-OH groups can be
hyper-reactive, owing to their intermolecular interactions with
RNA functional groups nearby in space that transiently deproto-
nate the 20-OH for activation (McGinnis et al, 2012). Overall, these
studies hint that 20-OH reactivity could be modulated to interact
and catalyse an acetylation reaction with aspirin.

The biological consequences of RNA acetylation could be quite
large (Figure 2C). For example, the 20-OH is an important
functional group in splicing (Fica et al, 2013). The binding of
aspirin to the RNA and acetylation of an activated 20-OH could in
theory change the splicing pattern of a gene, therefore producing
an alternative RNA isoform and protein product. Additionally
20-OH groups have important roles in RNA structure and function
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(Moss, 2013). The acetylation of 20-OH groups may alter the ability
of a RNA to fold properly and ultimately result in an incorrect
conformation and therefore disruption of biology. Lastly, it has
been shown that RNA 20-hydroxyl functional groups can have a
role in the recognition of protein partners (Lunde et al, 2007). The
capping of these interactions by aspirin could in principle alter the
binding affinity or change the ability of the RNA to be sensed by an
RNA-binding protein. These are just a few of the many potential
biological consequences that RNA acetylation by aspirin could
have on RNA biology and ultimately the many networks of a cell.

Small molecule metabolites have also been an understudied
target of aspirin. Nevertheless, metabolites can be in some cases at
millimolar concentration within certain cells (Bennett et al, 2009).
Many such metabolites become altered by interactions with
carcinogens and other exogenous agents. Therefore it seems
plausible that the reaction of certain metabolites with aspirin could
alter the metabolic landscape and have substantial effects on the
biology of cells. Which metabolites would be so important and
potentially reactive? One such molecule is Acetyl coenzyme A or
acetyl-CoA. Acetyl-CoA is an important molecule in metabolism
and is used for acetyl transfer reactions to many biological
molecules. Its main function is to convey the carbon atoms within
the acetyl moiety to the citric acid cycle (Krebs cycle). In chemical
structure, acetyl-CoA is the thioester between the acyl carrier
domain of the molecule and the coenzyme A (Figure 3A).

One of the most important functions of the acetyl-CoA donor is
the regulation of chromatin state and therefore, transcription
(Marmorstein and Roth, 2001; Marmorstein, 2001). One such
potential way the acetylation of CoA could alter gene expression
would be through chemical recycling of the acetyl-CoA in the cell
(Figure 3B). This would thus increase or maintain a high steady
state level of acetyl-CoA to serve as a substrate for acetyl
transferase enzymes. Indeed, changes to acetylation status of many
proteins have been tagged as an important process in neoplasm,
depending on the target gene loci involved (Archer and Hodin,
1999; Wang et al, 2001; Kouraklis and Theocharis, 2003). Overall,
the mere suggestion of acetyl-CoA activation by aspirin being an
important alteration to the metabolic state of the cell is a rather
intriguing possibility. Future efforts need to be extended to uncover
novel targets of aspirin and aspirin-induced acetylation inside
the cell.

CONCLUSION

Scientific evidence suggests that both constituent groups of aspirin
that is, the acetyl and salicylate moieties have distinct targets that
may together contribute to its anticancer effects. Although the
acetyl group of aspirin did get its fair share of attention after

the discovery of its mechanism of action through the inhibition of
the COX enzymes in the 1970s, it has since been largely ignored.
Acetylation is a unique characteristic of aspirin that is not shared
with any other NSAID. Acetylation is also a critical endogenous
posttranslational modification that affects the function of a wide
array of proteins in the body (Choudhary et al, 2009). The
ubiquitous nature of acetylation was demonstrated by Zhao et al,
2010, who showed that 41000 proteins are naturally acetylated in
human liver cells. These included 44 metabolic pathway enzymes
involved in glycolysis, fatty acid and glycogen metabolism,
tricarboxylic acid and urea cycles. Acetylation has been associated
with the control of enzyme activity by activating, inactivating or
destabilising metabolic enzymes (Xu et al, 2013) and may allow
cells to respond to changes in metabolic demands (Wang et al,
2010). Deregulated acetylation has been implicated in diseased
states such as cancer (Xu et al, 2013) and therefore, identification
of acetylatable targets of aspirin and modification in their function
may shed light on the chemopreventive action of this drug.
Aspirin’s ability to chemically acetylate endogenous proteins/
biomolecules has immense therapeutic significance. Further
research will provide a greater understanding of how the vast
array of recently identified proteins/biomolecules acetylated by
aspirin contributes to its chemopreventive properties.
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